Molecular-dynamics simulation of argon nucleation from supersaturated vapor in the NVE ensemble.

نویسنده

  • T Kraska
چکیده

The possibility to conduct simulations of homogeneous nucleation of argon from a supersaturated vapor phase using a microcanonical or NVE ensemble is evaluated (NVE: number of particles N, volume V, and energy E are constant). In order to initiate a phase separation kinetic energy is removed from the system in one step which transfers the system into a supersaturated state. After this temperature jump the simulation is continued in a NVE ensemble. The simulations are performed for different initial-state points and different temperature jumps. The cluster formation and growth over the course of the adiabatic simulations are analyzed. The progression of the temperature being related to the cluster size in NVE systems is traced. Also the influence of the size of the simulation system is investigated. For a certain range of low supersaturation a dynamic coexistence between two states has been found. Furthermore, the obtained nucleation rates are correlated with two simple functions. By applying the nucleation theorems to these functions the size and excess energy of the critical cluster are estimated. The results are consistent with other theoretical data and experimental data available in the literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nucleation and droplet growth from supersaturated vapor at temperatures below the triple point temperature.

In 1897 Ostwald formulated his step rule for formation of the most stable crystal state for a system with crystal polymorphism. The rule describes the irreversible way a system converts to the crystal with lowest free energy. But in fact the irreversible way a supercooled gas below the triple point temperature Ttr.p. crystallizes via a liquid droplet is an example of Ostwald's step rule. The ho...

متن کامل

Molecular Dynamics Simulation of Vapor Bubble Nucleation on a Solid Surface

Heterogeneous nucleation of vapor bubbles on a solid surface was simulated by the molecular dynamics method. Liquid argon between parallel solid surfaces was gradually expanded, until a stable vapor bubble was nucleated. Argon liquid was represented by Lennard-Jones molecules and each surface was represented by three layers of harmonic molecules with the constant temperature heat bath model usi...

متن کامل

A Molecular Dynamics Simulation of a Bubble Nucleation on Solid Surface

A heterogeneous nucleation of a vapor bubble on a solid surface was simulated by the molecular dynamics method. Liquid argon between parallel solid surfaces was gradually expanded, until a vapor bubble was nucleated. Argon liquid was represented by 5488 Lennard-Jones molecules and each surface was represented by three layers of harmonic molecules with the constant temperature heat bath model. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 124 5  شماره 

صفحات  -

تاریخ انتشار 2006